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The mean passage rate of a propagating interface, subject to random advection or random vari-
ation of the local propagation speed, is investigated analytically and computationally. A model
representing the longitudinal propagation of two points of the interface separated by a fixed trans-
verse distance is formulated and analyzed. In the limit of weak random perturbations, the model
predicts several parameter dependences of the mean passage rate. These predictions are evaluated
by performing two-dimensional and three-dimensional numerical simulations of interface propaga-
tion. The analysis addresses broadband (i.e., multiscale, as in turbulent flow) as well as narrow-band
perturbations. In the broadband case, scaling laws governing transient as well as statistically steady
propagation are derived. The numerical simulations span a sufficient range of perturbation ampli-
tudes to exhibit the complete amplitude dependence of the mean passage rate, including scaling
behaviors governing the weak and strong perturbation limits.

PACS number(s): 05.40.+j, 02.50.—r, 43.30.4+m, 47.70.Fw

I. INTRODUCTION

Passage-rate problems associated with propagation
phenomena arise in diverse contexts, including applica-
tions in which the front is a physical interface and others
in which the front is a mathematical construct describing
a statistical property of an evolution process. The latter
applications are exemplified by models of the growth and
geographical spread of animal populations [1]. In appli-
cations of this type, the instantaneous state of the system
is determined by the spatial locations of all members of
the population. The notion of front propagation arises
in this context from consideration of the time evolution
of isopleths (i.e., level sets) of a coarse-grained instanta-
neous number density, or alternatively, the time evolution
of an ensemble-average density profile.

For problems in which the front is defined by coarse
graining or ensemble averaging, details of the instan-
taneous spatial structure are suppressed and the ques-
tions of greatest interest concern the time evolution of
the front. Typically, the process is described by a par-
tial differential equation governing the evolution of the
spatial profile of number density [1]. If there exists a
steadily propagating solution, then the corresponding ve-
locity eigenvalues represent the mean rate of population
spread, or in the terminology used here, the mean pas-
sage rate. There is extensive literature concerning both
the mathematical aspects of the eigenvalue analysis and
its diverse physical applications [1,2].

The problems considered here involve Huygens-type
propagation of fronts that are physical interfaces. Again,
the physical applications are diverse, ranging from phase
change (e.g., solidification) and deposition processes to
chemical (e.g., combustion) and physical (e.g., optical or
acoustic) impulses traversing advected or spatially het-
erogeneous media. Owing to the interesting structural
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features of such interfaces, studies to date have focused
primarily on their geometrical scaling properties [3].
Progress toward the solution of passage-rate problems
for interface propagation processes has been limited. A
paradigm of the passage-rate problem for heterogeneous
media is the first-passage percolation problem [4], related
to the geometrical concept of chemical distance (shortest
allowed path) [5]. First-passage percolation has been an-
alyzed and simulated numerically for lattices composed
of bonds randomly designated as open (propagation rate
unity) or blocked (propagation rate zero). Rigorous anal-
ysis has focused on demonstrating the existence of the
passage rate and the equivalence of various definitions
of the passage rate. Exact determination of the passage
rate is deemed to be mathematically intractable [6)].
Passage-rate problems fall broadly within the class of
problems concerning the determination of effective prop-
erties of random media from the microstructure [7]. Var-
ious analytical methods have been developed for the in-
vestigation of problems of this type, in particular, varia-
tional methods for determining bounds on effective prop-
erties [8]. It has not yet been demonstrated that these
methods are useful for analyzing passage-rate problems.
The approach adopted here has no obvious antecedent in
the literature on effective properties of random media.
Recent work by the present authors identified a scaling
governing passage-rate problems for a class of interface
propagation processes [9]. Scaling analysis, confirmed
computationally, was used to show that the mean pas-
sage rate of propagating interfaces subject to weak ran-
dom advection increases in proportion to the % power of
the amplitude of the random perturbations. The mech-
anism underlying this scaling was shown to involve an
intermediate time scale, here denoted 74, longer than the
time for the interface to propagate across one correla-
tion length of the flow, but shorter than the flow corre-
lation time. 74 is the time scale over which a balance

1100 ©1994 The American Physical Society



30 PASSAGE RATES OF PROPAGATING INTERFACESIN .. .. 1101

between interface wrinkling and smoothing processes is
established. These results were obtained by applying
a form of dimensional analysis [10] to a variant of the
Kardar-Parisi-Zhang (KPZ) equation governing stochas-
tic interface growth [11].

Here a discrete analog of continuum propagation is for-
mulated and analyzed in order to gain further under-
standing of the weak perturbation regime. The discrete
analog is a model of the time evolution of two points of
the interface whose transverse separation is of the order
of the flow correlation length. The growth of interface
height at these points is governed by two stochastic dif-
ferential equations whose coupling reflects the geometry
governing the propagation of curved interfaces.

Analysis and numerical simulation of spatially discrete
models is one of the principal techniques that has been
used to study the structural features of propagating inter-
faces [12]. The discrete model formulated here is used to
study parameter dependences of the passage rate. Lattice
problems previously considered in the context of first-
passage percolation are not kinematically equivalent to
continuum propagation in the weak-advection limit. The
desired equivalence is achieved here by transverse dis-
cretization, with a continuum representation of longitu-
dinal evolution.

The analysis treats propagation in advected media and
in spatially heterogeneous media within a common frame-
work. In the limit of weak random perturbations (reflect-
ing either weak advection or small variations of the local
propagation speed), these two problems are shown to be
formally equivalent. The analysis identifies the roles of
the three distinct time scales governing the propagation
process and provides clarification of the mechanisms de-
termining the passage rate.

In the weak perturbation regime, the discrete model
is amenable to systematic analysis and its interpretation
as an analog of continuum propagation, though nonrig-
orous, is plausible. Beyond this regime, an artifact of
the model renders it invalid for quantitative analysis. To
validate the model in the weak perturbation regime and
to determine parameter dependences of the passage rate
beyond this regime, numerical simulations of continuum
propagation in advected media and in spatially heteroge-
neous media are performed. The simulations are the first
to span a sufficient range of perturbation amplitudes to
exhibit the complete dependence of the passage rate on
perturbation amplitude and are thus of intrinsic interest
apart from their use for model validation.

The discrete model, denoted the “two-point model,”
reproduces the previously derived %-power dependence of
the mean passage rate on perturbation amplitude. More-
over, it predicts a %-power dependence of the passage rate
on the ratio of characteristic length scales of the perturb-
ing field and the propagating interface. This result is
useful to the extent that the ratio can be characterized
in a simple manner. For the class of perturbing fields em-
ployed in the simulations, the ratio is found to depend
only on spatial dimension. This result indicates the pos-
sibility that the coefficient in the relation between the
mean passage rate and perturbation amplitude depends
on spatial dimension, but not on other details of the per-

turbing field. Additional parametric studies would be
required to determine the generality of this simplest of
possible outcomes.

A scaling technique is used to extend the analysis to
propagation in self-similar flows. Scaling laws are de-
rived for steady and transient propagation regimes in
such flows.

This paper is organized as follows. In Sec. II, the prop-
agation processes considered here are specified and phys-
ical applications are noted. In Sec. III, the two-point
propagation model is formulated and analyzed. In Sec.
IV, predictions are compared to computer simulation re-
sults. In Sec. V, propagation subject to self-similar per-
turbations is analyzed.

II. INTERFACE PROPAGATION PROCESSES

The most general formulation of interface propagation
that is considered here is represented by the “flame prop-
agation” equation [9,13]

Oh
a + vy Vh=u[1—+—(Vh)2]1/2 +'U” (1)

Here h(x,t) is the interface height as a function of trans-
verse location x and V is the gradient with respect to x.
h is taken to be a single-valued function of x. This is
strictly valid only in the weak perturbation limit, owing
to the occurrence of overhangs at finite perturbation am-
plitude. [To maintain formal generality, the expansion of
the square root in powers of (Vh)?, yielding the nonlin-
ear term of the KPZ equation [11], is not implemented
at this stage.]

The interface h(x,t) is subject to (i) advection by a
given flow field v(x,k,t) whose longitudinal and trans-
verse components are denoted v and v, respectively,
and (ii) normal propagation at speed u(x,h,t) = A +
V(x, h,t), consisting of the mean speed X plus a fluctu-
ating part V. The notation reflects an analogy between
the two sources of fluctuations, the flow field v and the
propagation speed fluctuation V. Namely, if the ampli-
tudes of these fluctuating quantities are taken to be small,
then expansion of Eq. (1) to leading order in v, V, and
(Vh)? gives

Ooh A

5 =t §(Vh)2+V+v||, (2)
showing the formal equivalence of V and v in this
regime. (The smallness of the omitted term v - Vh rel-
ative to terms that are retained is discussed in Ref. [9]
and in Sec. IIIB.)

The physical implication of Egs. (1) and (2) is that
propagation in randomly advected media and propaga-
tion in media that are heterogeneous in the sense that
u is spatially varying (allowing also an autonomous time
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variation) are equivalent processes in the small-amplitude
limit, but may differ qualitatively at finite perturbation
amplitudes. Many physical applications involve both
types of fluctuations. Flame fronts in turbulent flow are
subject to local flame speed fluctuations caused by strain
and flame curvature [13]. Acoustic impulses propagating
through the ocean are subject to local sound speed fluc-
tuations caused by temperature and pressure variations
and to advection by currents and eddies. In practice,
advection is the dominant effect in turbulent combustion
and heterogeneity is the dominant effect in oceanic sound
propagation [14], so these applications may be regarded
as examples of the respective propagation processes. An-
other example of propagation through a heterogeneous
medium is combustion of solid composite propellants [15].

In the acoustics literature, the formulation analogous
to Eq. (2) is the stochastic Helmholtz equation. This
formulation and an equivalent ray-tracing formulation
are discussed by Karweit et al. [16]. They cite the lit-
erature in which the approximations leading to these
formulations are developed. Analogous considerations
in the combustion literature are discussed by Williams
[13]. For the present purposes, Eq. (1) is adopted as a
generic paradigm, yielding Eq. (2) in the weak perturba-
tion limit.

A feature that distinguishes Eq. (1) from the KPZ
equation is the dependence of the fluctuation terms on
spatial location, parametrized by (x,h), as well as on
time. It has been noted that the dependence of the fluc-
tuations on h introduces nonlinear couplings that com-
plicate efforts to apply analytical methods developed for
the case of autonomous fluctuations [10]. Here Eq. (1) is
analyzed for the case of autonomous fluctuations as well
as for the case of h-dependent fluctuations in order to
show that the former is not merely a special case of the
latter. The two cases are shown to exhibit qualitatively
different behaviors.

The distinction between these cases is highlighted be-
cause the physical applications considered here corre-
spond to the more difficult and less widely studied case
of location-dependent fluctuations. The location depen-
dence is self-evident for a heterogeneous medium whose
spatial variation of u is regarded as a specified property
of the medium. For an advected medium, v(x, h, t) is de-
termined by an evolution equation, typically the Navier-
Stokes equation. For present purposes, v is treated as a
random field with specified properties.

A further complication arising in some physical appli-
cations is the effect of the propagation process on the
perturbing fields u and v. In turbulent combustion, heat
release at the interface causes thermal expansion that af-
fects the evolution of v. In fluid or solid combustion,
the transport processes that determine u locally may de-
pend on front curvature and thus on higher derivatives
of h [13]. The diverse nonlinear couplings that arise in
various applications cause the parametric dependences of
the mean passage rate to be problem specific. Complica-
tions of this nature are omitted here in order to maintain
focus on the effect of specified location-dependent fluc-
tuations, with no feedback from the propagation process
to the processes determining u and v.

III. TWO-POINT MODEL
A. Model formulation

A discrete analog of continuum propagation is formu-
lated in order to achieve an analytically tractable rep-
resentation that captures the underlying physical mech-
anisms and reproduces the parameter dependences of
the continuum process. For clarity, the model is formu-
lated with reference to an advected interface with con-
stant propagation speed u = A. The advection process
v(x, h,t) is taken to be a narrow-band vector field charac-
terized by a correlation length L, defined explicitly in Sec.
IIIB. (Generalization to broadband advection is consid-
ered in Sec. V.)

The discrete model is interpreted in terms of contin-
uum propagation based on an idealized representation
of interface geometry. For illustration, propagation in a
two-dimensional medium is considered. The interface at
any instant is represented by a collection of circular arcs,
as illustrated in Fig. 1. This geometry is an idealiza-
tion of Huygens-type propagation of advected interfaces.
Constant-speed propagation (without advection) starting
from an arbitrary initial interface causes the interface to
evolve to a collection of circular arcs [11]. Advection
causes the arcs to deviate from circular shape.

A “two-point” advection-propagation model is for-
mulated to represent the evolution of interface height
h(z1,2,t) at two transverse locations z; and z,. Adopt-
ing the notations hj 2(t) = h(zy,2,t), hy = max(hy, h2),
and h_ = min(hy, h2), and denoting the perturbations
at ;2 by vy,2 (with vy defined accordingly), the model
consists of two coupled evolution equations

Oh
6_t+ =A+uvy, 3)

Here vy is the model analog of v|. As in the continuum
formulation, vy depends in general on ¢t and on spatial
location parametrized by (z4+,h+), where 1 and z_ are
the transverse locations corresponding to hy and h_, re-
spectively (e.g., z4 = z; and z_ = z; if hy > h2). Vh_
represents the gradient of h evaluated at z_.

This formulation is related to Fig. 1 by interpreting
z_ as the transverse location of an end point and z,

FIG. 1. Idealized representation of the instantaneous ge-
ometry of a propagating interface in two dimensions. The
characteristic interface length scale £ is represented here as
the transverse separation of adjacent extrema. The longitu-
dinal separation of the extrema is denoted g.
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as the transverse location of the maximum of a typical
arc of that figure. At the maximum, VA = 0, hence the
absence of a Vh contribution from Eq. (3). Based on the
geometry of Fig. 1, VA at an end point is 2¢|g|/(£2 — g?),
where g = hy — h; and € = |z2 — 1|. Specializing to the
weak perturbation limit, Vh_ = 2¢/¢ to leading order in
g/¢ < 1. The notation Vh_ = cg/¢ is adopted, where
¢ = 2 for the geometry of Fig. 1. (The value of c is
immaterial in what follows because c is subsumed into
an empirical coefficient.)

In the weak perturbation limit, Eq. (4) can be approx-
imated by

Oh_ A 2

— =2+ = (Vh_ - 5
A+ 2 (VA 4 Q

indicating the equivalence of this formulation to Eq. (2).
Subtraction of Eq. (5) from Eq. (3) and substitution of

the approximate expression for Vh_ gives

i) Ac?

¢ = ~agdlel + (6)
where w = v; —v,. For now, w is treated as random pro-
cess depending only on time, so that Eq. (6) determines
the statistics of g in terms of the properties of w(t). Con-
sequences of the dependence of v, 2, and thus of w, on
z1,2 and h, 2 will be considered presently.

For either sign of g, the term that is nonlinear in g
causes g to approach zero, consistent with the physical
picture that the propagation process causes smoothing of
interfaces and, in particular, reduces the curvature of the
circular arcs of Fig. 1. Equation (6) also indicates that
the transverse gradient of longitudinal velocity, here rep-
resented in discretized form by w, is the source of fluctua-
tions of g, consistent with previous analysis of continuum
propagation [9]. Thus, Eq. (6) embodies the mechanisms
reflected in Eq. (2), with the advantage that key proper-
ties of g are readily analyzed.

Equations (3) and (5) can be ensemble averaged to
obtain (Oh,/0t) = A + (v4) and (Bh_/8t) = X +
(Ac?/2) ((g/€)?) + (v-). Due to invariance under ex-
change of labels 1 and 2,

(5)=(5) =3 ((%)+ (%)
=2+ ,\Tcz <<§>2> +). (1)

This quantity is interpreted as the model analog of the
mean passage rate ur of a continuum interface. (The
notation is motivated by the “turbulent flame speed” in
combustion applications.) This interpretation is strictly
valid if the transverse locations of the maxima and end
points of the arcs in the continuum geometry of Fig. 1
are constant in time. Because this is not the case, a given
transverse location will on occasion correspond to an arc
maximum or end point, but in general will be neither.
The rate of longitudinal advance of the interface, aver-
aged over the transverse coordinate(s), need not equal

the rate of advance averaged only over arc maxima and
endpoints.

Nevertheless, the proposed interpretation should give
the correct scalings of ur, based on the following consid-
eration. For an interface in a spatial continuum, ur is
equal to A times the surface area of the interface per unit
projected transverse area because the volume swept by
the interface is proportional to its surface area [13]. For
the geometrical picture of Fig. 1, the analogous quantity
for a given transverse segment £ is A times the arc length
within the segment divided by €. To leading order in
g/€ < 1, the length-to-span ratio is 1+ %(g/f)2 for given
g and £. Averaging over segments, with each segment
weighted by its span £, gives

where A = % Because the geometrical picture of Fig. 1
is qualitative at best, A is regarded as an undetermined
coeflicient.

Implicit in the derivation of Eq. (8) is the assumption
that there is no mean flow in the longitudinal direction,
corresponding to vanishing of the spatial average of v;.
This does not imply that the term (v,) in Eq. (7) van-
ishes, because that term is equivalent to a time average
of v; evaluated at the instantaneous interface location
hi1(t). The propagation process induces correlations be-
tween h; and vq, so (v;) does not vanish, but it is shown
in Sec. III B that it is negligible in the weak perturbation
limit. Anticipating that result, (v;) is henceforth omitted
from the analysis.

Equations (7) and (8) imply equivalent scalings pro-
vided that fluctuations of £ are governed by a single
characteristic length scale. Letting £ now denote a char-
acteristic interface length scale, Egs. (7) and (8) can be
expressed generically as

uTT=1+A<Z—:>' (9)

The differing mechanistic origins of Eqgs. (7) and (8) are
thus subsumed into the coefficient A.

There are several simplifications inherent in the char-
acterization of interface geometry by a single length scale.
Spatial and temporal variations of the local interface
length scale are neglected, as are details of the kinematic
couplings among the arcs portrayed in Fig. 1. As noted
earlier, the representation of the interface as a collection
of circular arcs is also a simplification.

The justification of these simplifications is ultimately
empirical. In Sec. III B, a mean-passage-rate expression
is derived that involves the ratio L/¢, where L is a char-
acteristic length scale of the perturbing field. If passage
rates measured or simulated in diverse circumstances can
be correlated based on a simple assumption concerning
this ratio, then the present picture is operationally useful,
if not mechanistically confirmed. Numerical simulations
are interpreted from this viewpoint in Sec. IV.

The connection between the two-point model and con-
tinuum propagation in three dimensions is not readily
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expressed in terms of a geometrical picture analogous
to Fig. 1. In the weak perturbation regime, the scal-
ing up /A — 1 ~ ((Vh)?) is valid in three as well as two
dimensions, so Eq. (9) should still be applicable. The op-
erational definition of { is now ambiguous, but the choice
of definition should only affect the value of the coefficient
A.

In Eq. (9), (¢*) denotes the variance of g determined
from Eq. (6) for statistically steady propagation. The
transient dependence of ur can be analyzed by treating
(g%) in Eq. (9) as an ensemble average at given t and
treating Eq. (6) as a stochastic initial-value problem for
given statistics of g(0). Here the principal focus is the
large-t limit, corresponding to statistically steady prop-
agation. For statistically steady propagation, Egs. (6)
and (9) determine ur in terms of A and the statistics
of the fluctuating quantity w. Some aspects of transient
propagation are considered in Sec. V.

The key feature of Eq. (6) is its quadratic dependence
on g, analogous to the quadratic nonlinearity in Eq. (2).
The origin of the nonlinearity is geometrical, arising from
the projection of the propagation vector, locally normal
to the interface, onto the longitudinal coordinate corre-
sponding to the height variable h [11]. The present anal-
ysis provides an explicit demonstration of the effect of
the nonlinearity on the parameter dependences of ur.

B. Analysis of the weak perturbation limit

Solution of Eq. (6) is straightforward if w(t) is a white
noise. Self-consistent reasoning is used to show that w(t)
is effectively a white noise in the weak perturbation limit.
Namely, the white noise property is assumed, the steady-
state value of <gz> is estimated, and the estimate is used
to validate the white noise assumption.

Assuming white noise, Eq. (6) is a Langevin equation
with nonlinear dissipation. The fluctuation term induces
growth of g2 whose rate can be estimated from dg?/dt ~
D, where D is the diffusivity of the random process w(t).
According to Eq. (6), decay of g% due to the dissipation
term is of the form dg?/dt = —K|g®|, where K is of order
A/€2. Growth and decay are in balance when K|g%| = D,
giving (g?) ~ (D/K)*3. This determines a decay time
scale 74 by expressing the decay term Kg|g| in Eq. (6) in
the form g/74, giving 74 ~ K1 <g2>_1/2 ~ (K2D)~1/3,
or

Ta ~ (A2D/€%) 13, (10)

The diffusivity D and the correlation time 7, of the
random process w(t) are analyzed, providing a compar-
ison of 7, and 74 and thus a self-consistent test of the
white noise assumption. D is determined by the relation

[17]
D= Aw (w(0)w(t)) dt. (11)

Recalling that w = vs — v3, the consequences of the de-
pendences of the quantities v, 2 on ;1,2 and hy, 2 are now

considered. w is written in the form w = va(h2(t),t) —
v1(h1(t),t), indicating both the explicit dependence on t
and the implicit dependence through h; ;. The depen-
dence on z1 3 is implied by the subscript notation and
therefore is not shown as an argument of vy . Substi-
tution of this expression for w into Eq. (11) yields four
terms. Invoking spatial homogeneity, the interchange of
subscripts reduces the result to

D=2 /000 (v1(R1(0),0)v1 (ha(t), 1)) dt

—2 /x (v1(h1(0),0)v2 (ha(t), 1)) dt. (12)
0

To proceed further, additional properties of v; and v,
must be specified. v, and v, are determined by eval-
uating a continuum field v (z, k,t) at (z1,h1(t),t) and
(z2,ha(t),t), respectively. Here v is the longitudinal
(h) component of a homogeneous, isotropic, statistically
steady random flow field v. Denoting the variance of v as

v'2, isotropy implies <vﬁ> = v'?/d for d-dimensional flow,

where the angular brackets now denote an average over
d-dimensional space. (For clarity, the analysis is limited
to d = 2, but generalization to other d is straightfor-
ward.) Accordingly, vi%, = v'?/d, where v%, = (v},).
The correlation length and time of vy, defined as [18]

L= (vf)‘l/ow (v1(0,0)v,(h,0)) dh (13)
and
Ty = (vf>’1 /Ooo (v1(0,0)v1(0,t)) dt, (14)

respectively, correspond to the correlation length and
time of v).

With these definitions, the weak perturbation limit can
now be formally defined as the limit of small v'/X (in
the spatial continuum) or small vj/A (in the two-point
model). To evaluate D in the weak perturbation limit
for given v}, L, and 7,, hy 2(t) is approximated by At in
Eq. (12). This can be justified self-consistently by noting
that dh, z/dt is governed at any instant by either Eq.
(3) or (5). Provided that |Vh_| is small (which follows
from the ensuing analysis, hence the self-consistency), the
right-hand side of either equation is A plus terms much
smaller than A. Denote the magnitude of the additional
terms as M. Neglect of the additional terms is valid
provided that the resulting error in, say, hi(t) is much
less than the distance L over which v; varies significantly.
The error for given t is of order Mt. The error is therefore
determined by the range of ¢t over which the integrands
of Eq. (12) are non-negligible.

The integrands are correlations of quantities displaced
both in time and in space. The correlations are negligi-
ble if the temporal displacement is much greater than the
correlation time 7, or if the spatial displacement is much
greater than the correlation length L. The latter condi-
tion is more restrictive. Because hy (t) is approximately
At, the latter condition implies that the relevant range
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of t is of order L/A. This is smaller than 7, because the
ratio 7, /(L/A) is of order A/v} (based on the dimensional
relation v’ ~ L/7,), which is much greater than unity in
the weak perturbation limit.

Thus the integrands of Eq. (12) are non-negligible for
t of order L/A, giving an error of order ML/A. This is
much smaller than L, as required to justify the approxi-
mation for hy 2(t), provided that M « A. According to
Egs. (3) and (5), this condition is satisfied provided that
|Vh_| is small, which is verified shortly.

The time scale L/), distinct from the flow correlation
time 7, arises because the propagation process causes the
interface to sweep past flow structures at a rate A that
greatly exceeds the rate of evolution v’ of the structures.
In the reference frame of the interface, the perturbations
represented by the random process w have an effective
correlation time 7, = L/A <« T, due to this rapid sweep-
ing of the flow.

Sweeping effects are typically encountered in flow anal-
ysis in the context of the sweeping of small eddies by large
eddies in turbulent flow. In that context, the sweeping
effect is a complication largely responsible for the dif-
ficulty of turbulent flow analysis [19]. Here the sweep-
ing effect simplifies the analysis of the weak perturbation
limit, though away from this limit it is a complicating
factor. The simplification arises because the effect is de-
terministic in this limit, governed by the constant prop-
agation speed A.

The upshot of these considerations is that hy () can
be approximated by At in Eq. (12) and, moreover, the
explicit dependence on t (i.e., the second argument of
vy,2) is negligible. In other words, the flow is effectively
frozen because the sweeping time is much shorter than
the time for the flow to evolve. Equation (12) therefore
gives

D= z/m (v1(0, 0)vy (At, 0)) dt

—2 / ~ (02(0,0)02(At, 0)) dt. (15)

With the change of variables t = h/)\, the first integral
is found to be proportional to the flow correlation length
L given by Eq. (13), so Eq. (15) reduces to

D— "’L’P_L _ ; /0 ~ (02(0,0)02(h,0)) dh.  (16)

The integrals in Eq. (15) differ in that the correlation
function in the rightmost integral involves points dis-
placed transversely by £ = z2 — z; as well as longitu-
dinally by h. The leftmost integral therefore dominates
provided that ¢ is at least of order L, the length scale gov-
erning the falloff of velocity correlations with increasing
displacement. It has been noted that interface fluctua-
tions are generated at length scale L and that they are
dissipated most effectively at small scales [as shown in
Ref. [9] based on Eq. (2)], so the interface length scale
¢ is indeed order L or larger. Therefore it is reasonable
to neglect the rightmost term of Eq. (16), obtaining the
simple relation

2
p=20DL (a7)
A

This result reflects the role of the sweeping time scale
Tw = L/A. The diffusivity scales as V2T, where V is
a characteristic fluctuation amplitude and T is a char-
acteristic time scale. Because V is of order v;, Eq. (17)
implies that T is of order 7,,, consistent with the physical
processes underlying the properties of w(t).

With this estimate of D, the parameter dependences
of the passage-rate increment (ur/A)—1 given by Eq. (9)
can be obtained. Recalling [above Eq. (10)] that (g?) ~
(DE*/X)?/3, Eq. (9) gives

2/3 , ,\ 4/3
o) (5) -

The analysis recovers the %-power dependence of the
passage-rate increment on the ratio of the root-mean-
square velocity fluctuation v’ to the propagation speed
A, previously deduced from Eq. (2) based on dimensional
considerations [9]. In addition, a factor involving the cor-
relation length ratio L/¢ is obtained. ¢ is not a known
input because it is determined by the interaction of the
advection and propagation processes. As noted in Sec.
IIT A, the operational utility of this formulation is con-
tingent on the determination of a simple relationship be-
tween £ and L. In Sec. IV, evidence is presented in sup-
port of the proposal that L/{ depends only on spatial
dimension for some classes of perturbing fields.

In the weak perturbation limit, three distinct time
scales governing advected propagating interfaces have
been identified. The flow correlation time 7,, of order
L/v', is the slowest of the three. It has no direct relation
to interface evolution mechanisms. The fast time scale
Tw ~ L/A ~ (v'/A)7, characterizes advective perturba-
tions in the reference frame of the interface. The relation
Tw < Ty allowed simplification of Eq. (12) for D, leading
finally to Eq. (17). Substitution of Eq. (17) into Eq. (10)
gives

Ta ~ (§/D)*2 (' /2o, (19)

indicating that the time scale 74 governing the smoothing
effect of the propagation process is intermediate between
Tw and 7.

The relation 7, < 74 validates the assumption that
w(t) in Eq. (6) is effectively a white noise relative to the
time scale governing the propagation term and thus vali-
dates the diffusion picture leading to the derivation of Eq.
(17). The estimate of 74 also provides a rationale for the
omission of the term v -Vh from the left-hand side of Eq.
(2). For isotropic flow, the time scale governing fluctua-
tions of v, in the reference frame of the interface is the
same as the time scale 7,, governing longitudinal fluctua-
tions. In an elapsed time 7, the transverse displacement
of the interface is of order v'7,, ~ (v'/A)L. Because L is
of order ¢, this is much less than &, so the time required
for a significant (i.e., order £) transverse displacement is
much greater than 7,,. The diffusion picture is therefore
applicable to transverse fluctuations. The time required
for an order-{ transverse displacement is estimated as
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&€%/D ~ (¢/L)*(A\/v')7y, which is much greater than the
time scale 74 governing the decay of fluctuations. This
confirms the irrelevance of transverse displacements in
the weak perturbation limit.

Because transverse fluctuations of the propagating in-
terface are generated at length scale L by the flow, any
interface fluctuations at transverse length scales larger
than L must be generated by the v - Vh term acting on
size-L fluctuations. The slowness of this process relative
to the decay process ensures that such fluctuations are
not significant and therefore that £/L is not large. In
conjunction with the earlier observation that £ is at least
of order L, this establishes that {/L is of order unity.

According to Eq. (9), the right-hand side of Eq. (18) is
of order (Vh_)2. Because £/L is of order unity and v’/
is small by assumption, Eq. (18) implies that |Vh_| is
small, providing the required self-consistent verification
of the assumption at the outset of the analysis.

The sweeping effect plays a key role in the foregoing
analysis. An additional consequence of this effect is that
the term (v) in Eq. (7) is negligible in the weak perturba-
tion limit, as claimed in Sec. III A. This is demonstrated
self-consistently based on

t
hi(t) = At +/ §(t')dt, (20)
0
where §(t) = dhy/dt— . Taylor expansion of v, (h1) gives
t d’Ul
vi(hy) = vi(At) + / s(tdt'| = +--- . (21)
0 dh |j_xe

Due to the assumed flow properties [below Eq. (12)], the
ensemble average of vy(At) is zero. To estimate the av-
erage of the next term, note that relevant time scale t is
the relaxation time 74. Also note that dv;/dh is of order
v'/L. Therefore (v;) is of order (§) 74v'/L. Based on the
definition of §, Eq. (7) is equivalent to (Oh,/0t) = A+(6).
Therefore the contribution of (v;) is negligible provided
that (8) 7qv’/L < (§), which reduces to 74 <« 7,. This
inequality has been demonstrated, confirming that (v;)
is negligible.

The scaling properties of interest, in particular Eq.
(18), are thus established. The formal solution of Eq.
(6) is now obtained in order to identify which aspects of
the analysis are exact within the framework of model as-
sumptions and which involve additional approximations.
The probability density function P(g;t) of g(t) governed
by the Langevin equation 8,9 = —F(g) + w, where w is
a white noise with diffusivity D, evolves according to the
Fokker-Planck equation [20]

8P = 8,(FP) + D&2P. (22)

For the special case F(g) = Bglg|, where B is a numer-
ical coeflicient, this equation has been used [21] to ob-
tain the steady-state variance (g?) = (3D/B)*/3)T (3)-
Substitution of this result, with B corresponding to the
coefficient of g|g| in Eq. (6), into Eq. (9) gives

wr 4 6D 2/3
BN V(VE) (czsx) (23)

This result is expressed in terms of parameters of the
advection-propagation process by substituting the ap-
proximate expression for D, Eq. (17), giving

2/3 , ;N\ 4/3
ur _,_ A (L Y (24)
) 275 \ ¢ py

Here numerical coefficients are subsumed into the param-
eter A. Though the ratio L/{ is treated in practice as an
empirical coefficient, it is retained explicitly for compar-
ison to another case, considered next.

Namely, the case of autonomous perturbations is con-
sidered. Autonomous perturbations are characterized by
an amplitude v’ and a correlation time 7,. The pertur-
bations are not explicitly associated with a spatial struc-
ture. In particular, the relation v’ ~ L/7, is no longer
meaningful. A restricted class of flows can be formulated
that reduces to the autonomous case in the weak pertur-
bation limit. The exemplar flows considered in Sec. IV
are of this type.

In this case, there is no time scale shorter than 7, gov-
erning fluctuations of w. Dimensional estimation of D
based on Eq. (12) therefore gives D ~ v'?7,. Substitu-
tion into Eq. (23) gives

' 2/3 N 2/3
ur V Ty v
o) (5) (25)

The contrast between this result and the %—power de-
pendence on v'/A in Eq. (24) reflects the difference be-
tween autonomous perturbations and perturbations that
depend on spatial location. The sweeping effect arises
only in the latter case. The passage-rate scalings indi-
cated in Eq. (25) may be applicable to physical processes
that can be represented by Eq. (2) with autonomous ran-
dom forcing [11]. Equation (25) should be interpreted
with care because v’ appears in both factors on the right-
hand side. This point is considered further in Sec. IV.

Efforts to extend the analysis of advected propagating
interfaces to finite-amplitude perturbations encounter se-
rious difficulties. The two-point model as formulated is
analyzed in the strong perturbation limit as readily as
in the weak perturbation limit. In fact, Eq. (6) is re-
placed by an equation linear in g in this limit. The dif-
ficulty is that simplifications inherent in the model ren-
der it inapplicable to continuum flow in this limit. The
model accounts for advection-induced tilting of the inter-
face due to transverse variation of the longitudinal flow
velocity v, but it omits the contribution of the trans-
verse advection term of Eq. (1). At finite amplitude,
transverse advection becomes significant and introduces
complications such as overhangs, i.e., multiple valuedness
of h(x,t). Likewise, the (v;) term in Eq. (7) becomes sig-
nificant and its evaluation is problematic.

Studies of the strong perturbation limit based on
scaling and similarity analysis have been performed
[13,22-25]. Dimensional considerations indicate that ur
is proportional to v’ in this limit, because the process
is advection dominated and the only available, dimen-
sionally correct parameter group is v’ itself. The two-
point model does not recover this result, giving instead
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ur ~ (A')Y/2, which is readily obtained by analyzing
this limit using the methods of Sec. IIT A. This result is
an artifact of the anisotropy implicit in the occurrence
of large g values with no allowance for overhangs. In
the weak perturbation limit, the anisotropy of the two-
point model is physically correct, reflecting the near pla-
narity of the interface. (Lattice models necessarily in-
volve strong local deviations from planarity, hence the
continuum representation of the longitudinal coordinate
in the two-point model.) In the strong perturbation limit,
the two-dimensional continuum picture implied by the
two-point model involves replacement of the circular arcs
of Fig. 1 by vertically stretched elliptical arcs, a far differ-
ent picture from the isotropic structure expected under
conditions of advection dominance.

IV. COMPARISON TO NUMERICAL RESULTS

A. Formulation of an exemplar class
of perturbing fields

An exemplar class of perturbing fields is formulated for
the purpose of investigating numerically the parameter
dependences of ur, both within and beyond the regime
of validity of the two-point model. The computations
span a range of v’/ sufficient to determine the scaling
behaviors in the strong as well as the weak perturbation
limit. The formulation encompasses the two types of per-
turbation identified in Sec. II: constant-speed propaga-
tion of randomly advected interfaces and variable-speed
interface propagation in a fixed heterogeneous medium.

The choice of perturbing field is constrained by com-
putational feasibility. There are distinct considerations
in the limits of small and large v'/A. For small v'/),
the characteristic time governing interface area growth
is much greater than the time for the interface to sweep
forward one correlation length (as shown in Sec. IIIB).
Therefore numerical simulation requires propagation of
a longitudinal distance of many correlation lengths to
achieve relaxation of initial transients. It is impractical
to construct and store a velocity field of the required size
prior to the simulation. Rather the perturbation field
ahead of the interface is constructed on an ongoing ba-
sis. A class of perturbing fields that can be constructed
in this manner was formulated in a previous numerical
study of the weak perturbation regime [9].

That class of perturbing fields does not, however, sat-
isfy the computational requirements for large v’/A. The
front-tracking technique that is efficient for small v’/
[9] becomes impractical due to its inability to handle
the overhangs and multiple connectedness that occur for
large v’/A. In this regime, it is advantageous to employ
the field-equation technique, in which the evolving in-
terface is represented as an isosurface of a scalar field
G(x,t) that is governed by a nonlinear evolution equa-
tion [26]. This approach requires the field G to obey pe-
riodic boundary conditions in transverse directions and
a jump-periodic boundary condition in the longitudinal
direction.

The computational method adopted here is to apply
the front-tracking technique at small v’/ and the field-
equation technique at large v'/), thereby obtaining ur
over the desired range. The method is applied to a class
of perturbing fields that satisfies the computational af-
fordability requirements of both methods.

The choice of v(x,t) for the advection-propagation
problem is as follows. Formally,

v(x,t) = Ve; sin(wt) sin(kz; +r), (26)

where V is a velocity amplitude, w and k are fixed, and
r and the direction indices ¢ and j are time-dependent
random variables in the following sense. The integers i
and j (ranging from 1 to d) and the real number r are
randomly selected at regular time intervals t = n7/w,
n=1,2,3,.... These random selections, subject to the
constraint 7 # j, change the orientation and the direction
of spatial variation of the velocity field and introduce a
random shift along the coordinate axis in that direction.
These changes do not cause discontinuous time deriva-
tives of the velocity field because they are implemented
only when the time-modulation factor sin(wt) is zero.

The velocity field specified by Eq. (26) is not isotropic,
though it is invariant under permutation of Cartesian
axis labels. This is not a concern in the weak perturba-
tion limit because the longitudinal perturbations domi-
nate in this limit. Numerical results indicate that scalings
beyond this limit are likewise unaffected.

An analog of Eq. (26) for the fixed heterogeneous
medium can be formed by removing the orientation vec-
tor e;. In this case, the analysis of D is complicated. For
simplicity, j is constrained to the transverse direction(s)
for the heterogeneous case. This breaks the invariance
to axis permutations that is obeyed in the advected case.
Again, the scalings do not appear to be affected.

To apply the analysis of the weak perturbation limit to
the exemplar perturbing fields, the diffusivity D defined
in Sec. III B is evaluated for these perturbing fields in the
Appendix. For the advection-propagation problem, the
substitution of D, given by Eq. (A2), into Eq. (23) gives

ur | _ A (1——cos(k£)>2/3 (g)“/“
A [d(d — 1)pa?3 kE x)

(27)

where numerical coefficients are subsumed into A and ¢,
denotes the “phase velocity” y,\—k

The analogous result for heterogeneous propagation is
obtained by replacing the term d(d — 1) by (d —1) in Eq.
(27). The difference between the two results is solely a
reflection of the different formulations of the perturbing
field in the two cases because, as explained in Sec. III B,
the two propagation processes become equivalent in the
weak fluctuation limit. Thus the comparison between the
two propagation processes becomes, in this limit, a com-
parison between two different perturbation fields. For
v’/ not small, the two processes are mechanistically dis-
tinct.

Equation (27) and its analog for the case of hetero-
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geneous propagation express ur /A in terms of v'/A and
¢x. On physical grounds, a more obvious parametriza-
tion would be in terms of v’/ and ¢, = “’T/,E Variation of
v’ /X for fixed ¢, corresponds to variation of the propaga-
tion rate for fixed flow parameters. In contrast, variation
of v'/) for fixed ¢, implies simultaneous variation of the
propagation rate and the frequency parameter w.

Parametrization in terms of ¢, modifies the depen-
dence on v'/A in Eq. (27), giving instead the Z-power
dependence derived earlier for the case of autonomous
perturbations. This reflects an artifact of the exemplar
perturbing field, namely, the lack of spatial variation of
v in the direction of the velocity vector. The character-
istic time scale for variation of w is therefore determined
not by spatial variation of v but by its temporal varia-
tion, governed by the frequency w. In this regard, the
exemplar case is analogous to the case of autonomous
perturbations, with 1/w corresponding to the time scale
Toy-

The parametrization involving ¢, is adopted because
this parameter has been shown to govern the response
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of the interface to perturbations in a related class of de-
terministic flows [27]. It is of interest to examine depen-
dences on ¢, for the class of flows represented by Eq.
(26), which involve randomization.

The results of a numerical study parametrized in this
manner are shown in Fig. 2. The numerical method is
outlined in Sec. IV B, and comparisons to the analysis of
Sec. III are discussed in Sec. IV C.

B. Numerical method

The exemplar perturbing field, Eq. (26), has been
formulated so that it is computationally tractable using
both the front-tracking technique and the field-equation
technique. The front-tracking technique is formulated for
computational efficiency in the regime v’/ < 1. An ef-
ficient algorithm is needed for v'/A <« 1 because in this
regime, the distance over which the front must propagate
to achieve relaxation of initial transients is large.

Namely, the relaxation distance is ur7g4, where for
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FIG. 2. Scaled passage rate versus scaled perturbation amplitude V' = v/, computed for the exemplar class of perturbing
fields with normalized phase velocity ¢ = 1/4 (), 1/2 (A), 1 (O), 2 (O). Open symbols, front-tracking computations, filled
symbols, field-equation computations, dashed lines, model results in the weak fluctuation limit based on a d-dependent fitted
coefficient, as discussed in the text. Advection-propagaticn problem for (a) d = 2 and (b) d = 3. Heterogeneous propagation
problem for (c¢) d = 2 and (d) d = 3. For the advection-propagation problem, solid lines correspond to the linear dependence
of passage rate on perturbation amplitude obtained in the strong perturbation limit.



50 PASSAGE RATES OF PROPAGATING INTERFACESIN . .. 1109

v'/A € 1, ur = X and 74 is given by Eq. (10). For
the exemplar perturbing field, Eq. (A2) indicates that
D ~ v'?/w. Therefore the relaxation distance is of or-
der (k£)4/3¢§‘/3k"1('u'/)\)_z/3, which greatly exceeds the
flow length scale 1/k for v'/A « 1 (unless k{ vanishes
at a sufficient rate as v’/ decreases, a possibility that is
ruled out by subsequent numerical results).

The front-tracking technique applied here was used
previously [9], but was described only briefly, so the
numerical algorithm is described in detail for the case
d = 3. The front is assumed to be a single-valued func-
tion H(z;,z;) of transverse coordinates (x;,;), where H
is the front location in the longitudinal coordinate. [The
indices 7 and j here represent particular transverse direc-
tions, in constrast to their meaning in Eq. (26).] Overall
propagation is in the direction of increasing H. The front
moves normal to itself due to advection and propagation
(or propagation only, for the heterogeneous propagation
problem). This normal motion is projected onto the lon-
gitudinal coordinate, neglecting the transverse compo-
nent of the motion. This simplification is valid in the
weak perturbation limit (see Sec. IIIB). Based on these
considerations, Eq. (1) yields

aa—It{ = A1+ (VH)2 + v (28)

for the advection-propagation problem and an analogous
expression for the heterogeneous propagation problem.

For the exemplar perturbation field, length is scaled
by 27 /k and velocity is scaled by A. The front, which
is periodic in z; and x; with period unity in these
units, is simulated on a transverse unit square with
grid spacing 1/64. Discretized front locations are la-
beled H(¢,7). The average H, of H at the four points
(,7),(: +1,7),(5,7 + 1), and (¢ + 1,7 + 1) is assigned a
nominal coordinate (i+ %, i+ %) The slope of the surface
at each (7, j) is determined from these averaged heights,
thus incorporating a smoothing effect into the gradient
determination. The gradient squared is

[Ha(i + %’J + %) - Ha(": - %’ ) — %)]2
AZ
[Ha(i - %v] + %) - Ha(i+ %7] - %)]2
A? ’
(29)

[VH(, )] =

+

where A is the diagonal grid spacing. There are two
exceptions to this relation, when H (3, j) is a local max-
imum H(i,j) > Ha(i + 3,7 = 1) or a local minimum
H(i,j) < Ha(i % 3,5 £ 3).

For H(i,j) > Ha(i £ 3,5 £ %), the gradient is set to
zero. In this case the propagation is taken to be the
longitudinally directed at the nominal unit rate. Due
to nonzero gradients at nearby nodes, the advancement
there will be at a rate larger than unity, so the front
location at those nodes may catch up with the local
maximum. If the gradient were not set to zero at lo-
cal maxima, then these points would continue to exceed
"the advancement rate of their neighbors and the surface

would suffer increasing distortion, an artifact of spatial
discretization.

At local minima, corresponding to the condition
H(i,j) < Hu(t £ %,j + 1), one-sided estimates of the
square of the slope are computed in each direction along
a given diagonal, and the larger of the two is used. For
example, the larger of [Ha(i+ 3,7+ 3) — H(%,5)]%/(A/2)?
and [Ho(i — 3,5 — 3) — H(3,7)]?/(A/2)? is taken to be
the squared slope along the corresponding diagonal. A
minimum location may correspond to a cusp in the sur-
face. The one-sided estimates will yield the maximum
advancement in the vicinity of a cusp. This reflects the
fact that the most rapid advance in the vicinity of a cusp
corresponds to the physical branch of the multiple-valued
solution for front evolution. In contrast, use of central
differencing across a cusp would give a lower, possibly
zero, rate of advance, causing an unphysical prolonga-
tion of the cusp feature.

For the advection-propagation problem the front is ad-
vanced with the specified advection velocity and then the
normal propagation at rate unity is determined from a
predictor-corrector scheme. For the heterogeneous prop-
agation problem the local propagation rate is incorpo-
rated into the predictor-corrector scheme.

This algorithm exploits the near alignment of the nor-
mal vector with the longitudinal direction in order to
achieve the efficiency needed for affordable computation
in the weak perturbation limit. Consequently, its valid-
ity for v'/A of order unity is problematic. Therefore, the
approach that is taken is to check representative front-
tracking results for larger v’/ by comparing them to re-
sults obtained using the field-equation technique, which
does not involve weak perturbation approximations. This
check is performed for the advection-propagation prob-
lem in two dimensions, for three choices of ¢,.

The field-equation technique has been described pre-
viously [26], so only a brief summary is presented. For
the two-dimensional advection-propagation problem, the
equation

%% +v-VG = \|VG| + V3G (30)
is solved numerically on a 642 grid with the initial condi-
tion G(x) = x|, where x| is the longitudinal component
of x. The boundary conditions are periodic in the trans-
verse direction and jump periodic in the longitudinal di-
rection, constraining the functional form of the velocity
field v(x,t) that can be simulated [hence the consider-
ations leading to Eq. (26)]. For ¢ = 0, each isopleth
G(x,t) = Gy is convected by the field v(x,t) and prop-
agates in the direction of decreasing G at speed A along
the local normal. Each isopleth is thus a realization of
the advection-propagation problem.

The dissipation factor e is assigned a value large
enough to suppress instabilities arising from spatial and
temporal discretization. The grid spacing and time step
are chosen so that instabilities can be suppressed at a
value of € small enough so that the dissipation term does
not cause large systematic errors. For the computations
reported here, ¢ = 0.004.

The systematic errors associated with this technique
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are those typically arising in the finite-difference solution
of convection problems. For given spatial and temporal
resolution, these errors depend primarily on the typical
magnitude of the velocity field being simulated, which
in this instance is u7. Therefore the relative error of
results for ur — A increases as this difference becomes
small compared to ur, which occurs for small v'/A.

For either technique, statistical precision of the com-
puted value of ur is determined by the time duration of
the simulation. The precision of the computed results is
indicated by the deviations of individual data points in
Fig. 2 from a smooth dependence on v'/A.

C. Results and comparisons

Figure 2 shows the computed v’/ dependence of ur,
scaled so that 4/3-power dependence of ur — A on v’/
corresponds to a plateau on the plots. In these scaled
log-log plots, linear dependence on v’'/A corresponds to
linear falloff with slope —1/3.

For the advection-propagation problem in two dimen-
sions, the extrapolation of front-tracking results to large
v'/A\ is consistent with field-equation results in that
regime. Discrepancies are apparent at the smallest v’/
values for which both techniques were used. These dis-
crepancies evidently reflect systematic errors in the field-
equation technique rather than the failure of weak pertur-
bation approximations in the front-tracking technique,
because the techniques are in best agreement at higher
v’ /X values for which the field-equation technique be-
comes increasingly reliable (see Sec. IVB). This indi-
cates that the validity of the front-tracking technique, at
least for the purpose of computing ur, extends to v’/A
of order unity.

In all cases, the computed results indicate decreas-
ing sensitivity to ¢ as v’/ increases. This implies a
tendency for the ratio ur /v’ to become insensitive to
details of interface geometry in the strong perturbation
limit. The generality of this inference cannot be deter-
mined from this limited sensitivity study. (Note that the
range of v’/ for the heterogeneous propagation problem
is bounded because A +v must be non-negative, requiring
V < X and thus v'/A < 1/2.)

Figure 2 indicates that the exemplar perturbing field
conforms to the predicted dependences on v'/A in both
the weak and strong perturbation limits. This is the first
explicit demonstration of both limiting behaviors for a
given exemplar case. In Sec. IIIB it was shown that the
two-point model accounts for the scaling in the weak per-
turbation limit and that dimensional reasoning accounts
for the scaling in the strong perturbation limit. An im-
portant goal for combustion and other physical applica-
tions is to formulate a mechanistically based model that
captures both limiting behaviors and transition between
them [25]. The results shown in Fig. 2 provide a quanti-
tative benchmark for such a model.

Dashed lines in Fig. 2 are obtained from Eq. (27) based
on the assumption that k{ may depend on d but not
on v'/\ or ¢5. Therefore the term involving k§ in Eq.
(27) is subsumed in the coefficient A. The model results

indicated by the dashed lines correspond to numerical
values A = 1.35 for d = 2 and A = 2.7 for d = 3, chosen
to fit the simulation results.

Comparison of the model and the simulations indicates
the validity of the assumption that k£ is independent of
v’ /X and ¢5. The independence of v’/ is implied by con-
vergence of each data set to a plateau as v’/ decreases,
indicating that the %-power dependence on v’'/A in Eq.
(27) fully accounts for the dependence of ur /A on v'/A
in the weak perturbation limit.

The results also indicate that k£ is insensitive to struc-
tural details of the perturbing field. This insensitivity
is indicated first, by the confirmation of the —%—power
dependence on the parameter ¢, that governs tempo-
ral response to perturbations and second, by the good
agreement that is obtained using the same value of A
for the advection-propagation and heterogeneous propa-
gation problems, which are formulated to have distinct
spatial structures (see Sec. IVA). It cannot be deter-
mined from these results whether k€ is independent of
d because other quantities with unknown d dependences
have been subsumed into the parameter A.

It is inferred that the interface length scale £ is propor-
tional to the perturbation length scale 1/k insofar as the
present comparisons can assess the relationship between
these scales. This result mitigates a key limitation of the
analysis, the inability to analyze systematically, or even
to define precisely, the scale £. The result is consistent
with, and generalizes, the previous observation that ¢,
parametrizes the response of the interface to perturba-
tions in a restricted class of deterministic flows [27].

The utility of the present analysis hinges largely on the
hypothesis that the ratio L/ in Eq. (24) has a simple de-
pendence on the structure of the perturbing field. The
present results support this hypothesis, but do not con-
clusively establish its correctness. In this regard, further
numerical as well as analytical studies would be benefi-
cial.

V. EXTENSION TO SELF-SIMILAR
PERTURBATIONS

Though there is no formal restriction on the bandwidth
of the perturbing field in Sec. III, the underlying physical
assumptions are not a priori valid in the case of broad-
band perturbations. The analysis in Sec. III involves only
one length scale L and one velocity scale v'. Here the
case of a self-similar broadband perturbing field is ana-
lyzed using a variant of the scaling technique applied by
Pocheau to turbulent flame propagation [24].

For this purpose, Eq. (18) is modified in a way that
does not affect the leading-order parameter dependences
but leads to a scale-invariant result that introduces
higher-order corrections. The modification is based on
the observation that the sweeping speed is taken to be A
in Eq. (15), but it is (slightly) more accurate to set the
sweeping speed equal to the mean passage rate ur. On
this basis, ) is replaced by ur in Eq. (17). Proceeding as
in the derivation of Eq. (18), the relation
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ur 02 \ /3
3 1=A4 ( AuT) (31)
is obtained, where L/£ has been assumed constant and is
therefore subsumed, along with other numerical factors,
into the coefficient A.

Equation (31) is treated as a recursive equation deter-
mining the effective passage rate ur i, corresponding to
a length scale indexed by ¢, in terms of the effective pas-
sage rate ur;_; for the next smaller length scale (index
i — 1) and the level-i component v} of the root-mean-
square fluctuation of the perturbing field. Here successive
increments of ¢ represent geometrically increasing length
scales. This interpretation of Eq. (31) is implemented by
the substitutions ur — ur;, A = ur;_1, and v’ — v].
Writing up; — ur;—1 = dur;/di and rearranging terms,
the difference equation

4/3 1/3
dur,; v gy
L) ’ (32)
&

is obtained. In the weak perturbation regime, ur; is a
slowly varying function of ¢, so ur;_; can be replaced
by uz; on the right-hand side. With these substitutions,
integration of Eq. (32) from ¢ = 0 to the maximum level
i = I gives

4/3 _

4A !
ury = u4T/,3 + 5 /0 vi*? di. (33)

3

In inertial-range turbulence (but not limited to that
case), the dominant contribution to velocity fluctuations
is from the largest length scale, corresponding to level I.
In other words, 0'14/ 3 is the dominant contribution to the
integral and is approximately equal to v’ 4/3, Noting also
that ur corresponds to the propagation speed A and
ur,z corresponds to the mean passage rate ur, the result

u;‘/3 — A4/3 + %014/3 (34)

is obtained. This expression belongs to the class of scale-
invariant relations identified by Pocheau [24].

From Eq. (34), the leading-order dependence of ur — A
on v’/ derived in Sec. IIIB is recovered. Equation (34)
introduces higher-order corrections to this dependence.
Their significance cannot be assessed because higher-
order corrections to the narrow-band result have not been
analyzed.

It is noted in Sec. III B that the characteristic time 74
governing the propagation process is much longer than
the time for the front to sweep forward one correlation
length in the weak perturbation limit. Accordingly, the
longitudinal distance that must be traversed for relax-
ation to statistically steady propagation greatly exceeds
the correlation length. In turbulent flow, the correlation
length is typically of the order of the size of the flow do-
main, so transient effects must be considered in the weak
perturbation limit. Here the transient propagation of an
initially planar front is analyzed.

Quantitative analysis of transient effects in a finite do-
main requires incorporation of inertial-range turbulence

scaling. In particular, the velocity fluctuations v corre-
sponding to length scale I scale as v} ~ (I/L)/3v’ for
Lg <1< Ly [18]. Here L; denotes the “integral scale”
(i-e., correlation length) of the flow and Lk denotes the
Kolmogorov microscale representing the size of the small-
est eddies not dominated by viscous damping.

Broadband perturbations are obtained in the strong
turbulence regime L; > Lg. Adopting the usual ap-
proach for analyzing scalings in this regime [18], pertur-
bations corresponding to a typical length scale ! in this
range are considered. The effect of these perturbations
on transient propagation is determined by applying the
narrow-band analysis. Incorporation of the turbulence
scaling determines the ! dependence of the result, lead-
ing to identification of the range of [ values subject to
transient effects.

Transient propagation in the weak perturbation regime
is analyzed using the two-point model. The initially pla-
nar front corresponds to g = 0. Because the random forc-
ing and decay terms of Eq. (6) balance on a time scale 74,
the decay term is negligible during the transient interval
0 < t K 74. g therefore evolves during the transient as
a random walk. Substitution of the random walk scaling
(%) ~ Dt into Eq. (9), with D given by Eq. (17) and
L/¢ assumed constant, gives [ur(z) —A]/A ~ (v'/A)2z/L
for propagation a distance z, where L < = <« A1q. Here
ur () is the transient passage rate ;Zy, where t(x) is the
transit time over a distance x and A7y is the relaxation
distance based on ur =~ A.

This result is for the case of narrow-band perturba-
tions with correlation length L. It is applied to size-l
perturbations within a broadband flow by the substitu-
tions ur — ury, v/ = v}, and L — . For z equal to the
turbulence integral scale Ly, this gives

’U,T,[(LI) - ’U; 2 L] ~ v’ 2 L] /3 35

-0 T-6) () e

The rightmost expression is obtained by substituting the
turbulence scaling relation for v].

This result is valid for length scales [ such that Ay >
Ly, where 7, ~ (A/v})?/31/) based on application of Eq.
(19) to size-l perturbations. Substituting the turbulence
scaling relation for v, this implies that length scales
1> (v'/))8/7L; = I* are governed by the transient anal-
ysis, but smaller scales are governed by the steady-state
relation [ur;(L1) — A]/A ~ (v}/A)*/3. Within the range
Il < I*, up (Ly) is largest for | = I*. According to Eq.
(35), ur,(Ly) is a decreasing function of ! in the range
! > 1* corresponding to transient propagation. This iden-
tifies I* as the dominant length scale, so finally,

uT(L[) - /\ 'U'T,l' (L[) - A ’U' 12/7
) ~ ) > » (36)

which follows either from Eq. (35) or from the steady-
state relation evaluated at ! = I*. (Their agreement at
l = I* is the matching condition for the transient and
steady-state ranges of l.) Note, however, that this result
applies only if I* > Lk, where the dependence of Lk
on the flow Reynolds number is given by the turbulence
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scaling law Lx ~ Re™/*L; [18]. Thus Eq. (36) is valid
for Re > (A/v")®/7, which should hold for most cases of
interest. If this condition is not obeyed, then the tran-
sient analysis applies for all | > Lk, and the dominant
length scale is | = Lg. Evaluation of Eq. (35) forl = Lk
then gives

ur(Ly) — A 1/4 1’: :
B\ Re y) - (37)

Examples of propagation through a weak, broadband
perturbation field are optical propagation through at-
mospheric turbulence and acoustic propagation through
oceanic turbulence. (The broadband property arises be-
cause the power spectrum of refractive-index fluctuations
reflects the power spectrum of turbulent velocity fluctu-
ations that mix zones of differing refractive index.) The
application of the results of this section to propagation in
geophysical flows may require modifications to account
for stratification and other factors that complicate the
structure of these flows.

VI. DISCUSSION

Modeling and numerical simulation have been applied
here to a class of interface propagation processes involv-
ing media that are randomly stirred or heterogeneous.
The model involves transverse discretization but a con-
tinuum treatment of longitudinal evolution. A compar-
ison of model predictions to numerical results supports
this approach. In particular, the results support the pre-
dicted %-power dependence of ur — A on v’/ in the weak
perturbation limit, previously obtained by dimensional
analysis [9].

That analysis and the present formulation indicate
that statistically steady interface propagation through a
location-dependent (as opposed to autonomous) pertur-
bation field is governed by a relaxation length scale A7y
that is much larger than the correlation length of the per-
turbing field in the weak perturbation limit. This slow
relaxation, which underlies the %—power dependence, is
a manifestation of a nonlinearity of geometrical origin
in the governing equation. The physics underlying the
slow relaxation was recognized previously in a different
context [28].

The slow relaxation indicates the need for care in per-
forming numerical simulations (and likewise, experiments
and field observations) to ensure that transient effects
are properly interpreted. In particular, for v'/A <« 1 it is
found that the passage rate though self-similar flows gov-
erned by inertial-range turbulence scalings is governed by
a microscale [* = (v'/))%/7L;. Here I* is the character-
istic size of the largest eddies for which the relaxation
length scale is less than the turbulence integral scale L.
The identification of this microscale leads to a scaling law
governing the mean passage rate through a turbulent flow
of size Lj.

The two-point model formulated here provides a geo-
metrical interpretation of the scaling properties under-

lying these results and extends the previous analysis by
parametrizing the coefficient in the relation between the
mean passage rate and the perturbation amplitude. The
coefficient is found to involve a ratio of characteristic
length scales of the perturbing field and the propagating
interface. Numerical simulations indicate that this ra-
tio depends only on spatial dimension. This conclusion
should be regarded as tentative pending more extensive
parametric studies.

The formulation of a physically valid extension of the
analysis to strong perturbations is an open question. The
numerical simulations reported here exhibit the linear de-
pendence of ur on v’ that is expected in this regime based
on dimensional considerations. The simulations capture
the entire range of v’/ dependence for a given class of
perturbing fields, providing a benchmark for future ef-
forts to extend the analysis beyond the weak perturba-
tion regime.
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APPENDIX: PROPERTIES
OF AN EXEMPLAR CLASS
OF PROPAGATION PROCESSES

Properties of the advection-propagation problem with
the velocity field given by Eq. (26) are derived. Re-
sults for the heterogeneous propagation problem defined
in Sec. IV A are also presented; the derivations closely
parallel those for the advection-propagation problem.

The mean-square fluctuation v'? is obtained by squar-
ing Eq. (26) and noting that the ensemble average in-
volves a time average of sin®(wt) and a spatial average of
sin®(kz; + 7). Each of these averages contributes a factor
1/2, giving v'2 = V2 /4.

The diffusion coefficient D is evaluated based on Eq.
(12). The simpler approximate expressions for D derived
in Sec. IIIB are not used because they are based on an
assumed rapid falloff of spatial correlations, which is not
valid for the exemplar class of processes. In any event,
Eq. (12) is readily evaluated for these processes.

For the flow under consideration, it is important to
recognize that the averages indicated in Eq. (12) are en-
semble averages. An individual realization of the flow
does not obey strict time invariance due to the imposed
time periodicity. To express the ensemble averages in
terms of time averages, the velocity arguments (k,(0),0)
in Eq. (12) are replaced by (h1(to),te) and the lower lim-
its of integration are set equal to to. The ensemble aver-
age now corresponds to a spatial average (implemented
shortly) and a time average over to, implemented by inte-
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grating the right-hand side of Eq. (12) over 0 < to < 7/w
with normalization factor w/m. The upper bound of
each integral over ¢ is set equal to 7/w, reflecting the
random adjustments of the flow field at epochs nw/w.
(These adjustments cause the time correlations to vanish
ifto<m/w < t.)

Assuming that the longitudinal direction in the two-
point model corresponds to a coordinate axis, a nonzero
contribution to D is obtained only if direction ¢ corre-
sponds to that axis. Otherwise, v, in Eq. (12) is zero ev-
erywhere. Assuming also that the direction represented
by the separation z; — z; in the two-point model cor-
responds to a coordinate axis, j must correspond to the
same axis, or else vy (hz(t),t) = vi(h1(t),t) and the two
integrals in Eq. (12) cancel. Therefore Eq. (12) is evalu-
ated by conditioning on particular values of 7 and j and
multiplying the result by the probability 1/[d(d — 1)] of
obtaining a particular pair of values.

Based on these considerations, substitution of Eq. (26)
into Eq. (12) gives

2V2
d(d-1)

[ w /W
X / dto sin(wtp) / dtsin(wt),
0 t

0

D= ;Ksinz(‘l‘)) — (sin(r) sin(k€ + r))]

(A1)

where the angular brackets now denote averages over the
random variable r. Evaluation of the right-hand side of
Eq. (A1) gives the result

8’0’2
=—J1- k A2
D = — (1~ cos(ke)] (42)

for the advection-propagation problem.

For the heterogeneous propagation problem as formu-
lated in Sec. IV A, the analysis is identical except that
the probability factor 1/[d(d—1)] is replaced by 1/(d—1)
because there is no random selection of the orientation
index ¢. Therefore D for this problem is obtained by
multiplying the right-hand side of Eq. (A2) by d.
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